

Centre for Al-Fundamentals

RAEng Google DeepMind Summer Internship Programme 2025

Project proposal

Drojoct Titlo	Machina Loarning for Improved Estimation of Atmospheric	
Project Title	Machine Learning for Improved Estimation of Atmospheric Composition	
Lead supervisor	Simon O'Meara	
Project Description	Chemical transport models currently struggle to estimate abundances of particulate matter in the atmosphere within 50 % of observed abundances. But particulate matter has significant impacts on human health and climate, and chemical transport models inform our assessments of these impacts! The framework for particulate matter simulation in these regional/global models is theoretically sound, however they are limited by a data bottleneck. The model parameters are currently dependent on outputs from observations, which can only cover a small fraction of the possible physical and chemical conditions present in the atmosphere. Massive expansion of observations to cover the necessary physico-chemical space is currently impractical. However, the model parameters can alternatively be set by very detailed computer models (box models), which can cover the physico-chemical space. What is needed is a method to convert the big dataset generated by the box models into the necessary chemical transport model parameter values. Proof-of-concept work at UoM (Simon O'Meara, Gordon McFiggans and David Topping), has shown that machine learning, with techniques such as XGBoost, can indeed inform chemical transport models from box model data. Therefore, the platform is established for an internship project that advances our proof-of-concept. It is anticipated that the internship will deliver a report on the optimal setup of machine	
	learning for the described work. The intern will work with a (already generated) big data set of box model output and will need to identify the machine learning setup that returns optimal results (considering aspects such as mean absolute error when applied to test sets). The intern will also	
	demonstrate the impact of varying machine learning model accuracy on regional estimates of atmospheric particulate matter through the estimated human health burden (using existing estimation techniques).	

Royal Aca	demy ering	Google DeepMind	
	The successful intern will gain first-hand experience of machine learning in a research project, and practise quantifying how machine learning outputs affect real-world applications. The project supervisors embed EDI and project management principles in their work. Furthermore, the supervisors have abundant experience in supervising researchers of diverse characteristics (e.g. age, background).		
7 Week work plan	 reading, setting 2. Practise reading programme for model variables 3. Identify and imp machine learnin 4. Identify machine method to searco 5. Search over rang and practise pre- metrics in a drafi 6. Present results to and adjust method 	e learning parameters and design (code) th over their ranges ges for machine learning parameters senting the resulting performance t poster and draft report to supervisory team to gain feedback od as necessary	
Summary of project objectives	 Improved comp systematic searc space and return Evidence genera learning for info Within the availa for the optimal search 	pleting final poster and report. uter programme delivered for thing of machine learning parameter ning of performance metrics ted for the optimal setup of machine rming chemical transport models able evidence, recommendation made setup on made for future work.	
Learning outcomes	environment 2. Computer progr 3. Planning, deliver 4. Mechanics of ma 5. Experience of ap real-world probl 6. Quantitative and	ring and reporting a research project achine learning oplying machine learning techniques to a	